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In this paper we discuss new developments for the PSMG multiscale method, which we have

introduced previously as an efficient PDE solver for massively parallel architectures.

After an overview of the algorithm we introduce the fundamental multiscale recursion relation, as
well as appropriate Fourier space notation. We derive the multiscale recursion as a single functional
equation without reference to grids. We prove a sequence of rigoro‘us convergence rate bounds which
provide increasingly accurate estimates of the convergence rate for translation invariant problems. We
show that in constant coefficient situations the convergence rates for the method may be derived to arbi-
trary precision, and we develop an efficient numerical scheme for computing such rates. Convergence
rates are shown to be faster than reported previously. We present estimates for the normalized work

involved in PSMG solution:; the number of parallel arithmetic and communication operations required

per digit of error reduction. The work estimates show that the algorithm is highly efficient.
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1. OVERVIEW

In many situations the most efficient algorithms for the numerical solution of large sparse
elliptic problems are the various multigrid algorithms[1-3]. Usually these methods are able to
compute a solution with N unknowns in O (N) operations, asymptotically faster than most
other algorithms. Efficient parallel implementations of multigrid algorithms have been
reported on both SIMD and MIMD parallel computers[4-14]. Most of these methods are
designed for moderately parallel systems, where each processor will hold many degrees of

freedom.

The PSMG method, introduced in[15], provides a parallel algorithm appropriate to the
case where the number of processors is comparable to the number of degrees of freedom.
Related ideas have been introduced by Hackbusch[16]. As remarked in [17], PSMG is an
example of an intrinsically parallel algorithm. 1t is highly efficient if sufficient processors are
available, but is extremely inefficient on serial or low-parallelism computers. In situations
where there are substantially more fine grid points than processors, an efficient approach might
use a hybrid algorithm---using standard multigrid on the finest grids, but switching to PSMG
on grid levels where the number of processors approximates or exceeds the number of grid

points.

A brief but complete description of the PSMG algorithm is presented in Sections 2 and 3
below. Section 4 introduces the underlying multiscale recurrence relation which is used
throughout the paper. Section 5 specializes to translation invariant problems and introduces
notation in Fourier transform space. In section 6 we show that a single functional equation on
the unit square is equivalent to the PSMG recursion formula across grid levels, greatly simpli-
fying the analysis of PSMG convergence. Section 7 presents proofs of basic convergence rate
bounds which show that the PSMG method actually converges, uniformly in the grid size. Sec-
tion 8 discusses the numerical evaluation of convergence rates and develops an O (N) algo-
rithm for such evaluations. In section 9 we discuss methods for estimating the parallel work
required by PSMG. Section 10 discusses actual PSMG performance, comparing the work per

digit of convergence achieved across several different algorithms.



2. THE BASIC IDEA

Consider a simple discretization problem on a 1-dimensional grid. Standard multigrid
techniques work with a series of coarser grids, each obtained by eliminating the odd numbered
points of the previous grid. The error equation for the fine grid is then projected to the coarse
grid at even numbered points, the coarse grid equation is solved approximately, and the error is
interpolated back to the fine grid and added to the solution there. Finally a smoothing opera-
tion is performed on the fine grid. Recursive application of this procedure defines the complete

multigrid procedure[1, 3].

The basic idea behind PSMG is the observation that for each fine grid there are two
natural coarse grids - the even and odd points of the fine grid. (For simplicity we assume that
periodic boundary conditions are enforced). Either of these coarse grids could be used at any
point to construct the coarse grid solution, and both would presumably provide approximately
equivalent quality solutions. Thus it ought to be possible to find a combination of the two solu-
tions that is significantly better than either separately. It would follow immediately that such a
scheme would converge faster (fewer iterations) than the corresponding standard multigrid
scheme. Note that on a massively parallel machine the two coarse grid solutions may be
solved simultaneously, in the same time as one of them would take - we assume here that the
number of processors is comparable to the number of fine grid points. Both coarse grid prob-
lems are solved using the same set of machine instructions. Consequently the algorithm is well

suited to SIMD parallel computers, as well as to MIMD machines.

The idea outlined above extends naturally to multi-dimensional problems. In d dimen-
sions, 2% coarse grids are obtained from a fine grid by selecting either the even or the odd
points in each of the d coordinate directions. The fine grid solution is then defined by perform-

ing a suitable linear interpolation of all 2¢ coarse grid points.

3. THE PSMG ALGORITHM

The PSMG algorithm works with a single grid of points G%) of size n =n(L)=2F in
each dimension (called the level L grid, or the fine grid), but utilizes operators with different
scales / <L on that grid. Thus the algorithm is strictly speaking multiscale rather than mul-

tigrid. There are three basic operators: a finite difference operator A, an interpolation operator
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Q and a smoothing operator S =/—-ZA. All operators are periodic on the grid in each coordi-
nate direction. The PSMG algorithm extends naturally to both Neumann and Dirichlet boun-
dary conditions, with no increase in convergence rate. The simplest approach to implementing
Neumann or Dirichlet boundary conditions is to use reflection or anti-reflection boundary con-

ditions and an extended grid.

The operators at scale level /, denoted Al ), Q(’ ), and Z¢ ), couple points at a distance
d, = 2L~ Each level I operator is defined at all points of the grid G%). The basic steps
involved at level I, 0<I<L, for the solution of A©)U = f, starting with an initial guess u, with

error e and residual r, are described by:

Algorithm PSMG (1,u,f):

1. Compute residual: r =A®e = f — Ay

2. Project residual to coarse grid: r = r (trivial injection).

3. Solve coarse grid residual equation using PSMG: e’ =PSMG(/-1,0,r)
4. Interpolate to fine grid: ¢ = Q ®e’

5. Apply a relaxation: e’ = (I -ZVAD)e” + 2Oy

6. Compute and return the new solution: u™”’ =u +e””’

An exact solver is utilized instead of PSMG on the coarsest grid in step 3. As indicated in step
3, the initial guess for all coarse grids is taken to be 0. Consequently steps 1 and 6 are required
only on the finest grid. The process as described depends on an explicit choice for 0® and
Z®. The PSMG strategy is to choose Q(” and Z® as functions of AY) in such a way as to
optimize the convergence rate of the above algorithm. Explicit choices for 0® and Z© are
given in[15, 18], and in Section 10, for the cases where AD represents either the standard 5-

point or Mehrstellen discretizations of the Laplacian.
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4. THE PSMG RECURRENCE EQUATION

We note that a two-grid PSMG algorithm may be described in the form: rd = 1@y

where the two-grid residual reduction operator T is determined by:

T = s@q _A(L)Q(L)A(L—l)—l)

We define the two-grid convergence rate T of this iteration procedure as the quantity:

T = SLpr TE] ] . Clearly t© provides a bound on the convergence rate of the two-grid

method on any grid.

We obtain an equation for the residual reduction operator of the full PSMG algorithm by
recursive application of the two-grid algorithm described above. The corresponding residual
reduction then takes the form: r™ = M® r | where the multi-grid iteration operator M®) is

determined by:
MO =1@ 4+ (S(l)__T(l)) M¢-D , I=L, 1,
with M@ = 0. We define the multigrid convergence rate of this procedure as the quantity:
= sup su, MOy .
W= sup sup | IM*] ]

Clearly p provides a bound on the convergence rate of PSMG on any grid G ).

5. FOURIER MODE ANALYSIS

In order to complete the description of the PSMG algorithm it is essential to define the
operators Q([) and Z® used for interpolation and smoothing. In this section, we describe suit-
able classes of Q) and Z) for the special case of an operator which has translation invariant
coefficients. We will illustrate the ideas for the Poisson equation discretized on a periodic rec-
tangular grid G of N =nxn points, n=2F, which we label with the index i = (i1, i),
0<iy, iy < n. We will use two discretizations of the negative Laplacian —A. The first of these

is the standard five-point discretization defined by

1 _ -2
(Aé )u)i = " (4 T Uit T Ul T Ul T Ul ) s

l

where e; are integer vectors of length d; = 2L-1 in the coordinate directions in index space, or

alternatively by the familiar five-point star notation:
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-1
AD = p2 o1 4 4
-1
The second discretization we will study is the more accurate Mehrstellen discretization

represented by the nine-point star

-1 -4 -1
A = (hDHT |-4 20 -4
~1 -4 —1

Similarly, we will choose the operators Q ® and Z® to be defined by simple symmetric three

parameter nine-point star operators (with appropriate scale length depending on /):

, 411 91 91 ; Zn %1 2n
Q(!) =141 90 91| » z® =h12 Z1 Zo Z1}
d11 491 911 211 21 21

or equivalently in operator notation:
! -
Q@) = qot + 1 Wpppr + gy + g + 1y ) +

q11 (ui+e'1+e’2 + Ui gl yel + Uisel ¢l + ui—e’1~e’2) ’

with a similar expression for Z)u. For simplicity, we take the parameters g; and z; to be

independent of the scale parameter /.

Since all of these operators are translation invariant, they are diagonalized by the discrete
Fourier transform. The analysis of the PSMG algorithm then becomes particularly convenient.
In the following we work entirely in Fourier transform space, where each of the operators A ),
0® and Z® will reduce to multiplication by a trigonometric function. In terms of the two-

dimensional discrete Fourier transform on G ©):
1"l o
e =n" % Ty, 0<kpky<n
Juj=0

and the notation x;!) = cos(2nk;d;/n) , i =1,2, the operators A) and Q¥) reduce to multi-
plication by the trigonometric polynomials:
AL =k @4 - 26D 42§Dy

AP =6hDT 0 - 8aef +xf) - axOx D)
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0 =qq + 2q;{" +x{) + 4qx{xf" |

with a similar expression for Z¢) in terms of parameters z,, z; and z;,. Application of the

two-grid iteration operator T over the grid G @) reduces to multiplication by the function:
! 1 1
T¢ )k =& )k < )k ,

where $©, =1-2®,A®, and C¢ )o=1-00,4¢ ‘I)k“lA ), are the Fourier representations
of the smoothing and coarse-scale correction operators, respectively.

For both the Laplace and Mehrstellen case, C(l)k has apparent poles at the four points
lxl(’) | = [xz(l )| =1, which are the zeroes of the coarse grid difference operator. The pole at
xl(l) =x2(1) =1 is canceled by a corresponding zero in the numerator, but this is not so for the
other three poles. We cancel the remaining zeroes in the denominator by carefully choosing

the three parameters g;. Itis easily checked that the two conditions:

917902 . qu1=q04 ,
suffice, leaving one free parameter g in the O operator to be chosen later.

A further constraint is necessary if the multigrid iteration operator M®) is to have a bound
independent of /, namely the constraint that the coarse grid correction operator C" vanish at
the origin in frequency space. This constraint leads to the condition ¢y=.25 on the interpola-
tion operator Q ) which is therefore uniquely determined. The resulting form of C® is then:

2 x D)

COp =1~ 5g0 (1+x )1+ D) :
2—y 1(1)2~X2(l)2

for the five-point operator, with a similar expression for the nine-point operator. Note that the

same restrictions on Q are required for the five and nine-point operators.

To get an improved convergence rate we have also used a 25-point star operator for O :

-6122 912 92 912 6122-
d12 911 91 911 912
Q=192 41 9041 92
d12 911 91 911 912
1922 912 92 912 922

Again we compute an explicit rational function expression for the coarse-scale operator C,El ) as
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a function of the trigonometric variables xi(’). As before, there are three poles of the denomina-

tor in C ,El ) which we cancel by careful choice of 0, leading to the two constraints:
0=q0—4q; +4q1;+4q2+442— 841, ,
0=qgo=4q11+4q2+4q9 .

We must add the constraint
1=qo+4q,+4q11+49,+49+8q,, ,

required to ensure that the coarse grid correction operator C%) vanishes at the origin in fre-
quency space. It follows that there are 3 independent coefficients of Q, along with the 3

parameters of Z, that are available to minimize W in the multigrid analysis.

In the translation invariant case all of the operators in the recurrence equations for the
multigrid residual reduction operator M) introduced in the previous section commute. Furth-
ermore M) is also then the error reduction operator. M) is therefore determined recursively
as a sum of products of low-degree rational functions in the x;*). Since M®) is a multiplication
operator in the translation invariant case, its norm is the maximum value of |M,§l )| evaluated
over all relevant frequencies k;, or equivalently, evaluated over those discrete points in the

square —1 <x{" , x4 <1 that correspond to Fourier frequencies on the grid GO,
1 2 P q

Translation invariant problems will have an inherent singularity if constant functions are
in the null space of the differential operator A. In Fourier space this results in bad behavior at
the origin £=(0,0). The singularity must be dealt with. One solution is to omit constant func-
tions and zero frequency from the domain of interest. Alternatively one may include these
functions by using the Moore-Penrose pseudo-inverse[19,20] to extend operators from the
space of non-constant data. This latter choice is equivalent to defining M®(0,0)=1 in the

basic recurrence relation.

6. AFUNCTIONAL EQUATION FOR M

A remarkable feature of PSMG for translation invariant PDE without lower order terms
(such as the Poisson equation) is that we can phrase the defining equation for the iteration in a

form completely independent of grids or grid levels. The resulting equation is a simple
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functional equation on the space of trigonometric polynomials. The key point in deriving this
relationship is to make a transition from unbounded frequency variables (k) to uniformly

bounded angle (0) or cosine (x = cos(0)) variables.

In previous sections, all operators have been explicitly shown as dependent on the grid
G®) and the level I, as well as on frequency k;. We begin with a lemma which shows that the
kernels of these operators are actually independent of L and need not be computed at even fre-

quencies k.

Lemma 1: Each of the operators O =S¢ ), T¢ ), M defined on G&) has a kernel Ok(’)
independent of L, and satisfying O 2(52 = Ok(l"l).

Proof: From section 5 we note that the only explicit [ or L dependence in the operators S, T
is in the trigonometric functions xk(l ) = cos(2mk /2)). Factors of h; involved in the operators A
and Z always cancel out provided there are no first order or constant terms in the difference
operator. Thus the operator kernels depend explicitly on / but not on L. Furthermore we note
that xz(fc) = cos(2m 2k /2") =ka D and consequently we have the result of the lemma for S and

T.

We prove the result for M by induction on /. For /=1 we apply the recurrence along with
MO =1, obtaining MY =8M, and so the lemma applies for /=1. Now assume the lemma

applies to M¢D. Then
MY = T + (8 - TEMED
= T 4§D _Td-DyMmI-?
= Mg

This completes the induction proof.
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As a consequence of the lemma, we may write the recurrence as a single-level functional
equation:

MO=T( + SO-TOMY

We now regard M) as a function of the normalized variables X; = cos(2mk;/n ) rather than of
k;. These variables span the range [~1,1] as k; and n vary. Alternatively we may introduce the
variables 0; = 2nk;/n and regard M as a function M(0) on [0,2x]x[0,2%]. We denote by D 4 the
set of values (8,,8,) where 0 <k; < n, for any n of the form 2', and where the origin, k ;=k,=0,
is omitted. We denote the corresponding set of values of x by D,. Thus all of the values of
M, for all grids G, are values of a single function M(6), 0=(6,,6,) in D, or equivalently
of a single function M(x), x=(x{,x,) in D,. Similarly the smoothing and two grid kernels
extend into functions S(0) and T(8) defined over D¢, or S(x) and T(x) defined over D, , and

the multiscale recursion relation reduces to the form:
M(6) = T(®) + (S(6)-T(®) M(28), M0)=1,
or equivalently
M@x) = T@) + (S@)-T(x)) M(2x>-1), M(D)=1,

where we have used the fact that cos(28) = 2cos(0) — 1. We will use these functional equa-
tions in the following section. The choice of M(1) = 1 was explained at the end of the previous

section, and effectively defines the Moore-Penrose pseudo-inverse on constant functions.

7. CONVERGENCE RATE BOUNDS: STATEMENT AND PROOFS

In this section we will derive rigorous upper bounds on the multigrid convergence rate of

the PSMG algorithm in the translation invariant case described in the previous section.

Theorem 1: Define py = sup |T(x)] /(1 - |S(x)—T(x)|). Assume that the smoother
P4

satisfies |S| <, at the three high frequency points (—1,1), (1,-1) and (=1,-1). Then the mul-

tigrid convergence rate [ satisfies the bound p < ;.
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Proof: Let P4 denote the set {(1,-1), (-=1,1), (=1,-1)}. We will use a mapping g: R? 5 R?
defined by g (x;.x5) = (2x2~1,2x2~1). We decompose D, into a union of disjoint subsets

D, n20, where we define recursively:
D,={xeD,:xnote D, jandg(x)e D,_1} , Dy=P;.

D,, consists of the points of D, which correspond to angles in D g of the form 21k /2" with k
odd. We will prove Theorem 1 holds for the sets D,, by induction on n.

The induction hypothesis holds for Dy=P3. To see this we note that for each point
peP3,g()=(1,1) and since M (1,1) = 1, the recursion relation reduces at these points to

M@p) = T@)+S@)»-T@E)) -1 =Sp), pePs.

Thus by the assumption of the theorem that |S(p)| <p,; for peP;, we conclude that
[M(p)| < W4, and thus that the induction hypothesis holds for D .

Now assume the result is true for D,,_; and let xe D,,. Since g (x)eD,,_,, it follows that:
IM()| < | TG + [SC)-T(x)] | M(2x>-1)]
SA=1SG)-TG) Dyy + 1SC)-TG) [y
=Hi.

which completes the proof of the induction hypothesis for D,,.

Remarks: The assumption on S in the statement of Theorem 1 is a requirement that S be small
at high frequencies, which is essential anyway if S is to be a good smoother. Thus it is not a
major restriction. However the assumption can be avoided by terminating the PSMG iteration
at the level 1 grid rather than at level 0. In that case an exact solution is performed on level 1,
so that M is O on the set P3. We also remark that the theorem does not require that the dif-
ferential operator be homogeneous, as required to derive the grid independent recursion rela-
tion. The theorem is easily extended by the same proof to the case where M(x) is dependent

on the level /. The theorem does however require translation invariance.
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The bound described above was used in[15] to design good choices for Q and Z. In fact the
bound |, requires only that we find the suprenum of a rational function on the unit square. One
can estimate |y by evaluation of the suprenum over a large grid of values in the unit square.
The resulting quantity is then used as an objective function and minimized with respect to the

parameters defining Q and Z.

Sharper convergence criteria result if one first applies the iteration formula for M(x)
several times. It is notationally convenient to write M as a function of the angles
0<0; =2rk;/n < 2n. We also define R(8) = S(6)-T(0). The recurrence relation then reduces

to:
M(8) = T(6) + ROM(20), M(0)=1 .
Iterating v—1 times we arrive at:
M(®) = T(6) + R(O)T(26) + R(O)R(26)T(46) +
+ R(O)R(20) - - - RQVB)T(2'6) + R(OR(20) - - - RR'OM(2"*'6)

= T,(0) + R,(O)M(2""'0) .

This again has a similar form to the original recurrence equation, and we prove exactly as in

the previous theorem:

Theorem 2: Define |, = sgp [T, ©)]/(1—]Ry,B)]) . Assume that the smoother satisfies

|S| <, at the three high frequency points (—1,1), (1,-1) and (-1,-1). Then the convergence

rate satisfies the bound p < L,

It is important to take care in evaluating the bounds . Even if R,,(0) approaches 1 at some
points, the bound may still be useful provided the numerator T,(0) also vanishes at the same
points. Indeed this situation occurs at the origin even for yy. In evaluating |T,| it is also

important to take the absolute value only after the various terms have been added together.
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These convergence results may be extended to provide various bounds on derivatives of
M(6), and in particular to show that with appropriate conditions imposed, |L may be approxi-
mated arbitrarily closely by taking the suprenum of | M(8)| on a suitably fine mesh of points 6.

For further details we refer to[21].

For illustration we provide here results obtained on grids with edges of size n(L) from 4
through 1024 using each of the bounds [i;,.., is. The final column is the exact norm as com-
puted using the full iteration formula. The results are for the case of a Mehrstellen operator
with 9-point Q and Z stencils - the coefficients of Q and Z are given in the last section of the

paper under PSMG9-9.

TABLE 1: CONVERGENCE BOUNDS L,

n(L) Ky Ha H3 Hq Hs H

4 .0009 0049 0049 0049 0049 0049

8  .0248 0174 0174 0174 0174 0174

16 .0264 0216 .0216 0216 0216 0217
32 .0291 0230 0216 0216 0216 0217
64  .0291 0241 0216 0216 0216 0217
128 .0292 0241 0225 0216 0216 0217
256 .0292 .0243 0224 .0220 0217 0217
512 .0292 .0243 0226 0220 0219 0217
1024 .0292 .0243 0226 0221 0219 0217

8. COMPUTATION OF CONVERGENCE RATES

In our paper[15] we have used the first theorem of the previous section to provide upper
bounds on PSMG convergence rates and to guide thereby, optimization processes. Basing an
optimization process for a rate on optimization of a possibly crude upper bound for that rate is
certainly not ideal. More recently[18], we have improved our knowledge of PSMG conver-

gence rates by exactly computing the spectral radius u(L) of the self-adjoint PSMG multigrid



-14 -
error reduction operator M%) for all grids G¢) with L ranging from 0 to 11. Here G©) is a

square grid with n = 2k points on a side. The verification is based on the iterative formula:
MO =1+ (O 1Oy MDD | 121,

for the multigrid operator M®). The correct domain for the translation invariant Poisson equa-
tion 1is the set of grid functions orthogonal to constants. In Fourier space this means that points

aliased to (0,0) are omitted from the computation. Equivalently one defines MO =1in (1).

We compute p®) by evaluating the recurrence above from /=0 to /=L in Fourier space
for every frequency pair &, ko appropriate to GD - je. for0< k; < n. The only approxima-
tion in this procedure is that the kernels are evaluated in double precision rather than infinite

precision arithmetic.

At first sight it would appear that the evaluation of p®) would require O (n%log L) opera-
tions - the number of grid points for level L times the cost O (log L) of an evaluation of the
recurrence. Remarkably, in Fourier space only O (n ) operations are required. The idea is to
use the previously derived fact that M{ = M{~D. The value of M{") is independent of which
grid level [ it is evaluated at (assuming frequency k exists at that level). Therefore we develop
an inverse process where we first evaluate M at all coarse grid points, then evaluate M on the
next finer grid but only at those points not in the coarse grid. Furthermore one can use sym-
metry in ky k, and between k; < n/2 and k; 2 n/2 to reduce the work by a further factor of 8.
We store all evaluated M, on a given level, so that the recursion on the following level can be
terminated after one step. It is this last fact that reduces the overall cost by log L. Given that
the result of a norm evaluation is a single data point in the optimization of the choice of Q and
Z, the ability to have such a fast evaluation of the norm of M is the key to obtaining highly

efficient PSMG processes in both 2D and 3D.

9. PARALLEL OPERATION COUNTS

In this section we discuss methods for estimating the work performed in a PSMG itera-
tion. We use a model of parallel computation introduced in[22]. Thus we assume only nearest
neighbor communication with four neighbors, purely SIMD communication and computation,

and we consider separately each grid level. The operation counts will be those for intermediate
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grids and the communication unit is grid level dependent - the cost for communication between

"nearest neighbors" at that grid level.

The PSMG algorithm was described as 6 separate steps in section 3 above to which we
now refer. For intermediate grids (0</ <L) the initial guess is taken to be O so that step 1 is not
needed. Similarly step 6 is relevant only to the top level grid L. Step 2 is free because PSMG
uses injection, while step 3 is counted at level /-1 or lower. Thus only steps 4-5 are to be
counted at level /. Apart from the 3 operators involved, we note that no communication is
required in these steps while two computations are required in step 5. Therefore we conclude
that at intermediate grid levels (0</ <L), the parallel communication and computation costs for

the PSMG algorithm are given by:

comm (PSMG (1)) = comm (Q ) + comm (A) + comm(Z) ,
comp (PSMG (1)) = comp (Q) + comp (A) + comp(Z)+2

where comm (O) and comp (O) are the number of parallel communication and computation
operations required to execute operator O .

In Table 2 below we present the operation counts for each of the individual operators
encountered in the four PSMG algorithms corresponding to choice of 5 or 9 point A and to 9 or

25 point Q stencils (often referred to as the PSMG5-9, PSMG9-9, PSMG5-25 and PSMG9-25

methods). For full details of the derivation of these operation counts we refer to[18].

TABLE 2: OPERATION COUNTSFORA,Q,Z
Operator Comp. Steps Comm. Steps

5-ptA (Laplacian) 3 4

9-ptA (Laplacian) 5 4

9-pt O (Interpolation) 4 4

25-pt Q (Interpolation) 12 8

9-ptZ (Relaxation) 5 4
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10. PSMG PERFORMANCE
An effective measure of algorithm performance depends on several factors besides con-
vergence rate. For parallel environments, measures of parallel work and of communication
need to be incorporated. Furthermore one needs to be precise about the underlying model
machine specification. As a model of parallel computation we have followed[22], as discussed

in the previous section.

If the asymptotic convergence rate of a method is p and the method requires w parallel
operations per iteration, the normalized operation count is defined as w/log;op, and measures
the parallel work required per grid level to reduce the error by a factor of 10. We consider

parallel communication and computation operations separately.

For several PSMG methods we present asymptotic convergence rates, the number of
parallel arithmetic and communication operations required on each grid per iteration, and also
the normalized operation count for arithmetic and communication. We summarize the results
for several simple cases in Table 3. For each cycle we use a single relaxation with a 9-point Z
stencil. The cases are labeled PSMGa—g where a and ¢ are the stencil size (5 or 9) of the

difference operator a and of the ¢ matrix (9 or 25) respectively.

TABLE 3: PSMG CONVERGENCE RATES
Convergence Steps per Level Normalized Steps
Method Rate Comp. Comm. Comp. Comm.
PSMG 5-9 08867 14 12 13.31 11.40
PSMG 5-25 02504 22 16 13.74 9.99
PSMG 9-9 02165 16 12 9.61 7.21
PSMG 9-25 00165 24 16 8.62 5.75

The corresponding coefficients for the interpolation operator Q and the smoothing operator Z

are (in the notation of[18] ):
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PSMGS5-9: q O=.25 q 1=.125 q 11=.O625
2(=.278079 z,=.0534577 21,=.0125615
PSMGS-25:  ¢(=.361017 q1=.11458 q11=-0625
q,=-.0309162  ¢,,=.00521024  g,,=.00316188
z¢=.361452 z1=.0891718 z1,;=.0293793
PSMG9-9: q0=25 q1=.125 q11=.0625
z¢=.300589 z,=.0432465 21,=.01399%4
PSMGY9-25:  g,=.34152 q1=.0995677 q1:=.0625
q,=-.0199225  q,=.0127161 q9,=-00295755
2(=.283286 z,=.0323815 z1;=.00835795

The convergence rates given in Table 3 are the maximum values of p*) for 0<L <11 and
therefore bound the exact convergence rates for all grids up to size 4 million points. In practice
we find that the convergence rates u(L) are unchanged to several digits of precision beyond
about level L=6. We therefore are confident, that the convergence rates in Table 3 extend to
arbitrary numbers of grid levels. As a final check we have solved the Poisson equation using
PSMG, with zero right hand side and a random initial guess, and in each case verified the con-

vergence rates of Table 3.

As a comparison point we note that the PSMG9-25 algorithm uses about half as much
computation and close to one fifth as much communication as the best standard red-black algo-

rithms[ 18, 22], assuming of course that there are about as many processors as fine grid points.
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